首页 > 玄幻魔法 > 我哥居然成神了

第263章 得绝仙剑!(1/2)

目录

一棵树中每两个点之间都有且只有一条路径(指没有重复边的路径)。一颗有N个点的树有N-1条边,也就是连接N个点所需要的最少边数。所以如果去掉树中的一条边,树就会不连通。

如果在一棵树中加入任意的一条边,就会得到有且只有一个环的图。这是因为这条边连接的两个点(或是一个点)中有且只有一条路径,这条路径和新加的边连在一起就是一个环。如果把一个连通图中的多余边部删除,所构成的树叫做这个图的生成树。

如果要在树中加入一个点,就要加入一条这个点和原有的点相连的边。这条边不会给这棵树增加一个环或者多余的路径。所以每次这样加入一个点,就可以构成一棵树。

一棵树既可以是有向的也可以是无向的。显然,树是连通图,但不会是双连通图(对于无向图)或者强连通图(对于有向图)。树可以算是稀疏图。

显然树中也没有自环和重复边。

定义

如果一个无向简单图G满足以下相互等价的条件之一,那么G是一棵树:

G是没有回路的连通图。

G没有回路,但是在G内添加任意一条边,就会形成一个回路。

G是连通的,但是如果去掉任意一条边,就不再连通。

G是连通的,并且3顶点的完图?不是G的子图。

G内的任意两个顶点能被唯一路径所连通。

如果无向简单图G有有限个顶点(设为n个顶点),那么G是一棵树还等价于:

G是连通的,有n?1条边,并且G没有简单回路。

如果一个无向简单图G中没有简单回路,那么G是森林。

性质

一棵树中每两个点之间都有且只有一条路径(指没有重复边的路径)。一颗有N个点的树有N-1条边,也就是连接N个点所需要的最少边数。所以如果去掉树中的一条边,树就会不连通。

如果在一棵树中加入任意的一条边,就会得到有且只有一个环的图。这是因为这条边连接的两个点(或是一个点)中有且只有一条路径,这条路径和新加的边连在一起就是一个环。如果把一个连通图中的多余边部删除,所构成的树叫做这个图的生成树。

如果要在树中加入一个点,就要加入一条这个点和原有的点相连的边。这条边不会给这棵树增加一个环或者多余的路径。所以每次这样加入一个点,就可以构成一棵树。

一棵树既可以是有向的也可以是无向的。显然,树是连通图,但不会是双连通图(对于无向图)或者强连通图(对于有向图)。树可以算是稀疏图。

显然树中也没有自环和重复边。

有根树

在一棵树中可以指定一个特殊的节点:根。一个有根的树叫做有根树。

有根树中的节点可以根据到根的距离分层。一颗有根树的层数叫做这棵树的高度。节点最多的那一层的节点数叫做这棵树的宽度。对于有根树,每条边都有一个特殊的方向:指向根节点的方向,或者说上一层的方向(或者相反的,指向叶节点的方向,下一层的方向)。一条边的两个端点中,靠近根的那个节点叫做另一个节点的父节点(也叫父亲、双亲、双亲节点),相反的,距离根比较远的那个节点叫做另一个节点的子节点(也可以叫孩子,儿子,子女等)。父亲方向的所有节点都叫做这个节点的祖先,儿子方向的所有节点都叫做这个节点的子孙。没有子节点的子节点叫做叶节点(或者叶子节点)。由于到根的路径只有一条,根节点以外的节点的父节点永远只有一个,祖先就是这个点到根的路径上的所有节点(包括根,不包括这个节点本身)。另外,以一个节点为根的树是指包括这个节点和其所有子孙,并以这个节点为根的树。由于一般不需要这以外的子树,

本章未完,下一页继续

书页 目录
好书推荐: 都市之医武高手 团宠气运小福宝 一不小心成为了三界大佬 就等你爱上我 高维造物 侦探之捉妖事务所 摄政王妃每天在线打脸 摄政王妃娇且媚 穿进剧本被打脸 成为救世主的我却慌得一逼