第五百一十六章 潜心研究(2/8)
诺贝尔物理学奖对他而言更是如同探囊取物。
“庞教授,稍等,我马上去数据中心取数据!”
庞学林点点头,看着乔安华的身影一路小跑着出了办公室。
半小时后,庞学林从乔安华手中拿到了过去三十年宇宙中微子背景辐射阵列所观测到的所有数据。
接下来的三个月,庞学林再次进入闭关状态。
三十年的数据,大小超过整整30tb,如果不是经过基因优化药剂的改造,单单分析这些数据,庞学林就需要几年时间。
但现在,对他而言,分析数据就是小儿科,最重要的,是如何从这些数据中获取自己想要的信息。
这种研究如同大海捞针,但庞学林却显得兴致勃勃。
以往穿越的那些世界,因为种种原因,庞学林虽然见识到了大量的黑科技,也学习了不少物理学、化学领域的前沿知识,但要说独立做研究,这还是第一次。
宇宙大爆炸中产生的大量光子在热大爆炸结束后遗留下来,随着宇宙膨胀而红移冷却,形成了我们今天观测到的宇宙微波背景辐射。
类似地,在宇宙大爆炸期间产生的大量中微子也遗留下来,形成了宇宙中微子背景。
早期宇宙中温度、密度都很高,因此中微子与其他粒子如重子、正负电子、光子等都发生充分的相互作用而形成热平衡流体,中微子可与其他粒子相互转化,这时中微子的分布符合极端相对论性的费米分布。对于一种极端相对论粒子,其数量和质量密度为n3/4fζ(3)/π23,p7/8fπ2/304……
其中t为温度,g为自由度,ζ为黎曼zeta
函数。对于费米子则适用前面有下角标f
的因子,对玻色子该因子等于1。随着宇宙膨胀,弱相互作用反应速率迅速下降(t5),难以维持中微子与其他粒子的热平衡。当弱相互作用反应速率Γ
但是,在中微子退耦后不久,早期宇宙中大量存在的正电子与负电子大量湮灭为光子对,这导致光子气体温度的下降在
一段时间内较中微子慢一些。一种简单的近似处理是考虑此过程中系统的熵在正负电子对湮灭前,光子、正电子和负电子各有两个自旋态,而费米子需乘以因子7/8,因此总有效自由度为gsi2γ(2e2e)7/811/2
正负电子对湮灭后相应的熵转移到光子中,自由度为2。总熵在此过程不变,则tf(11/4)1/3ti,最终光子气体的温度与中微子气体温度之间关系为tv(4/11)1/3tγ
今天宇宙微波背景辐射的温度为2725k,因此若中微子为无质量粒子,则其今天的温度将是1945k。实际上由于中微子有质量,其温度还要下降得更低一些。中微子振荡现象表明中微子质量不为零,但这个质量尚未测出。每种中微子(包括正、反粒子)今天的数量密度约为112
c3,据此可得今天的中微子相对密度为ΩνΣ
中微子退耦的时期也正是大爆炸核合成开始的时期。在这一时期,宇宙中的重子主要以质子和中子的形式存在。此后,质子和中子通过核反应形成氘核,进而继续反应生成氚(3h),氦3(3he),氦4(4he)等。由于氘的结合能较低,而重子数量远小于光子,因此氘很容易被大量黑体辐射光子中能量较高的少量光子破坏,因此尽管氘是质子中子直接反应的产物,但最后形成的量并不多,其丰度主要取决于重子数密度,稳定的氦则形成较多,其丰度与重子数密度和膨胀率都有关系。
中微子在这一过程中并不直接发挥重要作用,而是主要影响宇宙的膨胀速度。每种相对论粒子都会贡献部分宇宙密度,总的密度正比于有效相对论自由
本章未完,下一页继续