第四百二十一章 菲尔兹特别奖(3/5)
庞学林则从现场工作人员手中结果菲尔兹奖金质奖章与证书,一一颁发给了这四位获奖者。
四位位获奖者则相继发表获奖感言。
等到这一切都结束之后,庞学林才从朗兰兹老爷子手里拿到了属于自己的菲尔兹特别奖。
除了金质奖章要比其他几人的大上一圈外,庞学林并没有感觉到这个奖章有什么特别的地方。
倒是奖金,比起其他人的一万五千加元,直接增加到了五万加元。
随后,庞学林来到了演讲台前,发表属于自己的获奖感言。
整个会议室大厅安静了下来,现场数千人,都把目光聚焦到庞学林身上。
庞学林说道“谢谢,谢谢菲尔兹奖评奖委员会的厚爱。说实话,我虽然想过自己会得奖,但没想到竟然会以这种方式得奖。”
现场再次响起一阵笑声。
庞学林继续道“今天对我而言是个特别的一天,从我四岁开始,数学对我而言就成了我生命的一部分。不管是学习、工作与生活,研究数学,就仿佛呼吸一般自然。刚刚朗兰兹教授曾经说过,希望有一天能够看到代数与几何能够得到彻底的统一,这也是我一直追求的目标。”
“长久以来,数学家都试图在代数与几何这两门古老学科之间架起桥梁,想要构建某种大统一理论。但时至今日,这始终仅仅只是我们广大数学家的一个梦想。但这个梦想并非遥不可及。”
“古希腊时代,亚里士多德就曾说过我们不能通过算术去证明几何问题。他认为几何能帮助解决算数问题是无稽之谈。在当时,这个观点并无争议,却躲不过历史风霜的考验。与亚里士多德几乎同一时期的几何之父欧几里得,没有依赖数字,而是用作图的方法将逻辑公理扩展到证明中。数字仿佛立于另一个时空,几何技巧求路无门。”
“这一状况持续到了17世纪,直到法国人勒内·笛卡尔将代数技巧与欧氏几何结合,破开了数字与几何间的坚冰。笛卡尔引入了坐标系的概念,即点、线、面能用坐标数值完美描述,让几何学家能够用代数方法求解几何问题。”
“这就像登陆月球的时候,我们终于能够以准确的角度和位置的将火箭发射出去。但对于纯数学家而言,距离终点还有一半的征程。比方说,一个圆可以用代数方程精确描述,可是根据方程的解描点作图得到的图形,永远都不得全貌。一旦改变坐标的单位系统(例如从1变成π),就像纯数学家常做的那样,方程仍然成立,而绘图让人手足无措。”
“时间推移到1940年,另一个法国人安德烈·韦伊深受数字和几何间鸿沟的折磨。在德军占领法国前的几个月,韦伊因为拒服兵役而被拘禁于法国里昂外的一所监狱中。正是这段监狱中的日子让反让他收获颇丰,韦伊发现了代数与几何之间的零星线索,为我们找到代数与几何相统一的罗塞塔石碑奠定了基础。”
“这就涉及到了黎曼猜想,一个人尽皆知的素数分布问题。人们早就觉得这个猜想应该有对应的几何解释。上世纪三十年代,椭圆曲线已经得到代数证明。我们可以将素数的分布,转化为思考曲线上到底有多少个点。韦伊证明了黎曼猜想同样适用于解更复杂的曲线,自古希腊时代就耸立在这两门学科之间的高墙,终于裂开了一道缝隙,韦伊的证明为代数几何学科建立了良好的基础,一举推翻亚里士多德的观点。”
“然而直到现在,黎曼猜想虽然已经在前十万亿个素数上得到了证实,但仍未出现一个严格的证明。战后年代,身处环境更舒适的芝加哥大学,韦伊依然尝试努力解决这一素数谜题,但始终没有成功。随后,接力棒传到了亚历山大?格罗滕迪克上,他在上世纪六十年代重新定义了代数几何学。”
“在一系列的学术创新之中,格罗
本章未完,下一页继续